skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ganti, Radha K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose distributed scheduling algorithms that guarantee a constant fraction of the maximum throughput for typical wireless topologies, and have O(1) delay and complexity in the network size. Our algorithms resolve collisions among pairs of conflicting nodes by assigning a master-slave hierarchy. When the master-slave hierarchy is chosen randomly, our algorithm matches the throughput performance of the maximal scheduling policies, with a complexity and delay that do not scale with network size. When the master-slave hierarchy is chosen based on the network topology, the throughput performance of our algorithm is characterized by a parameter of the conflict graph called the master-interference degree. For commonly-used conflict-graph topologies, our results lead to the best known throughput guarantees among the algorithms that have O(1) delay and complexity. Numerical results indicate that our algorithms outperform the existing O(1) complexity algorithms like Q-CSMA. 
    more » « less